A. Appendix A

Wheeler Army Airfield - Field Enclosure Photographs

2. Installed at site – May 2003
3. Full Structure Inspection – August 18, 2003 – 13 Months
Wheeler Army Airfield – Construction – July 2002 and May 2003

Construction off-site and relocation

Figure A.1: Pre-fabrication in Pearl City – July 2002

Figure A.2: West elevation – May 2003

Figure A.3: North Elevation – May 2003

Figure A.4: South Elevation – May 2003
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Crawl Space – Cripple Wall

Figure A.5: Cripple Wall – NE end

Figure A.6: Cripple Wall – SE end

Figure A.7: Cripple Wall base – NE end

Figure A.8: Cripple Wall top – SE end

Figure A.9: Cripple wall base connection – NE end

Figure A.10: Cripple wall base – SE end
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Crawl Space - Posts

Figure A.11: NW Post

Figure A.12: SW Post

Figure A.13: NW Post base connection

Figure A.14: SW Post base connection
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Crawl Space - Floor Joists

Figure A.15: Exposed floor joists

Figure A.16: Exposed test connections – location 3

Figure A.17: Joist stiffener over cripple wall

Figure A.18: Joist connection over cripple wall

Figure A.19: Double edge joist with stiffener

Figure A.20: Covered crawl coupons – location 4
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Interior Wall Framing – East Wall – Plywood without vapor barrier

Figure A.21: East wall – North side

Figure A.22: East wall – South side

Figure A.23: East Wall – North Top Track

Figure A.24: East Wall – South Top Track

Figure A.25: East Wall – Top Track Connection

Figure A.26: East wall – Stud-track connection
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Interior Wall Framing – North Wall – Plywood without vapor barrier

Figure A.27: North Wall – West side

Figure A.28: North wall – Header west connection

Figure A.29: North Wall – Top track connection
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Vented Attic Framing

Figure A.30: Roof Trusses

Figure A.31: End Truss

Figure A.32: Ridge connection

Figure A.33: King post base connection

Figure A.34: Ridge connection fasteners

Figure A.35: Location 2 – Attic test connections
Wheeler Army Airfield – 13 Month Condition – August 18, 2003

Test Connection Locations

Figure A.36: Location 1 – Interior wall

Figure A.37: Location 5 – Exterior exposure

Figure A.38: Exterior test connection rack

Figure A.39: Location 1 – Interior test connections
Wheeler Army Airfield – 20 Month Condition – March 18, 2004

Crawl space cripple wall

Figure A.40: Cripple Wall – NE corner

Figure A.41: Cripple Wall – SE corner

Figure A.42: Cripple Wall – NE corner top

Figure A.43: Cripple Wall – SE corner top

Figure A.44: Cripple Wall – NE corner bottom

Figure A.45: Cripple Wall – SE corner bottom
Wheeler Army Airfield – 20 Month Condition – March 18, 2004

Crawl space posts

Figure A.46: SW Post

Figure A.47: NW Post

Figure A.48: SW Post top

Figure A.49: NW Post top

Figure A.50: SW Post base

Figure A.51: NW Post base
Wheeler Army Airfield – 20 Month Condition – March 18, 2004

Floor Joist Framing – Specimen exposure 7 Months

Figure A.52: Location 3 – Uncovered joists
Figure A.53: Location 3 – test connections
Figure A.54: Location 3 – connection fasteners
Figure A.55: Location 4 – Enclosed joists
Figure A.56: Location 4 – connection fasteners
Figure A.57: Joist connection
Wheeler Army Airfield – 20 Month Condition – March 18, 2004

Interior Wall Framing – Specimen exposure 7 Months

Figure A.58: Location 1 – Interior wall

Figure A.59: Location 1 – Top track connections

Figure A.60: Location 1 – connection fasteners

Figure A.61: Location 1 – zinc coupon

Figure A.62: 7 Month exterior connections added
Wheeler Army Airfield – 20 Month Condition – March 18, 2004

Vented Attic Framing – Specimen exposure 7 Months

Figure A.63: Location 2 – Attic test connections

Figure A.64: Location 2 – Truss top connection

Figure A.65: Location 2 – 7 Month conn. added

Figure A.66: Location 2 – Truss bottom connection

Figure A.67: 7 Month exterior connection set

Figure A.68: 7 Month exterior connection fasteners
B. Appendix B

Iroquois Point Inland - Field Enclosure Photographs

2. Installed at site – March 2003
3. Full Structure Inspection – August 13, 2003 – 13 Months
Iroquois Point Inland – Construction – July 2002 and March 2003

Construction off-site and relocation

Figure B.1: Pre-fabrication in Pearl City – July 2002

Figure B.2: SW elevation – March 2003

Figure B.3: East Elevation – March 2003

Figure B.4: North Elevation – March 2003
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Crawl Space – Cripple Wall

Figure B.5: East Cripple Wall

Figure B.6: Cripple Wall – SE end

Figure B.7: Cripple Wall – NE end top

Figure B.8: Cripple Wall – SE end top

Figure B.9: Cripple Wall – NE end base

Figure B.10: Cripple Wall – SE end base
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Crawl Space - Posts

Figure B.11: NW Post

Figure B.12: SW Post

Figure B.13: NW Post Base

Figure B.14: SW Post Base
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Crawl Space – Post Details

Figure B.15: SW Post Top – Interior view

Figure B.16: NW Post Top – Interior view

Figure B.17: SW Post Base – Interior view

Figure B.18: NW Post Base – Interior view

Figure B.19: SE Corner wall tie-downs
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Crawl Space – Floor Joists

Figure B.20: Joists on Cripple Wall – NE corner

Figure B.21: Joists on cripple wall – East end

Figure B.22: Joist to track fasteners

Figure B.23: Exposed Joists

Figure B.24: Joist connections at West end

Figure B.25: Joist stiffener at West connection
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Interior Wall Framing – East wall – Plywood without vapor barrier

Figure B.26: East Wall – North end framing
Figure B.27: East Wall – Top Track detail
Figure B.28: East Wall – Stud to track detail
Figure B.29: Test connections in East wall – Loc 1
Figure B.30: Test connections in East wall – Loc 1
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Vented Attic Framing

Figure B.31: Attic Framing

Figure B.32: Ridge connection fasteners

Figure B.33: King post base connection

Figure B.34: King post base connection

Figure B.35: King post top connection

Figure B.36: Test connections in attic – Location 2
Iroquois Point Inland – 13 Month Condition – August 13, 2003

Test Connection Locations

Figure B.37: Location 3 – Exposed crawl space

Figure B.38: Location 4 – Covered crawl space

Figure B.39: Location 5 – Exterior rack

Figure B.40: Location 5 – Exterior rack
Iroquois Point Inland – 20 Month Condition – March 18, 2004

Crawl space cripple wall

Figure B.41: Cripple Wall – NE corner

Figure B.42: Cripple Wall – SE corner

Figure B.43: Cripple Wall – NE corner top

Figure B.44: Cripple Wall – SE corner top

Figure B.45: Cripple Wall – NE corner bottom

Figure B.46: Cripple Wall – SE corner bottom
Iroquois Point Inland – 20 Month Condition – March 18, 2004

Crawl space posts

Figure B.47: SW Post

Figure B.48: NW Post

Figure B.49: SW Post top

Figure B.50: NW Post top

Figure B.51: SW Post base

Figure B.52: NW Post base
Iroquois Point Inland – 20 Month Condition – March 18, 2004

Floor Joist Framing – Specimen exposure 7 Months

Figure B.53: Location 3 – Uncovered joists
Figure B.54: Location 3 – test connections
Figure B.55: Location 3 – connection fasteners
Figure B.56: Location 4 – Enclosed joists
Figure B.57: Location 4 – connection fasteners
Figure B.58: Joist connection
Iroquois Point Inland – 20 Month Condition – March 18, 2004

Interior Wall Framing – Specimen exposure 7 Months

Figure B.59: Location 1 – Interior wall

Figure B.60: Location 1 – Top track connections

Figure B.61: Location 1 – connection fasteners

Figure B.62: 7 Month exterior connections added
Iroquois Point Inland – 20 Month Condition – March 18, 2004

Vented Attic Framing and Exterior – Specimen exposure 7 Months

![Figure B.63: Location 2 – Attic truss connection](image1)

![Figure B.64: Location 2 – connection fasteners](image2)

![Figure B.65: Location 5 – Exterior connections](image3)

![Figure B.66: Location 5 – connection fasteners](image4)

![Figure B.67: Location 5 – steel coupons](image5)

![Figure B.68: Location 6 – zinc coupon](image6)
C. Appendix C

Iroquois Point Coastal - Field Enclosure Photographs

2. Installed at site – March 2003
3. Full Structure Inspection – August 13, 2003 – 13 Months
Iroquois Coastal – Construction – July 2002 and March 2003

Construction off-site and relocation

Figure C.1: Prefabrication in Pearl City – July 2002

Figure C.2: West elevation – March 2003

Figure C.3: North elevation – March 2003

Figure C.4: West elevation – March 2003
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Crawl Space Cripple Wall

Figure C.5: Cripple Wall NE end

Figure C.6: Cripple Wall SE end

Figure C.7: Exposed joists on cripple wall – NE

Figure C.8: Covered joists on cripple wall - SE

Figure C.9: Cripple wall base - NE

Figure C.10: Cripple wall base - SE
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Crawl Space - Posts

Figure C.11: SW Post top

Figure C.12: NW Post top

Figure C.13: SW Post base - Interior

Figure C.14: NW Post base - Interior

Figure C.15: SW Post base – Exterior

Figure C.16: NW Post base - Exterior
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Crawl Space – Floor Joists

Figure C.17: Exposed and covered floor joists

Figure C.18: Joist connection over cripple wall

Figure C.19: Joist connection at South elevation

Figure C.20: Joist stiffener and fasteners

Figure C.21: Joist connection fasteners

Figure C.22: Joist to track fasteners
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Interior Wall Framing – East Wall – Plywood without vapor barrier

Figure C.23: East Wall – North End

Figure C.24: East Wall – South End

Figure C.25: East Wall – North corner top track

Figure C.26: East Wall – Stud-track connection

Figure C.27: East Wall – Test Connections
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Interior Wall – South Wall – Plywood without vapor barrier

Figure C.28: South Wall – East End

Figure C.29: South Wall – West End

Figure C.30: South Wall – Header Connection E

Figure C.31: South Wall – Header Connection W

Figure C.32: South Wall – West corner fasteners
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Interior Walls – North and West Walls

Figure C.33: North Wall – West top corner

Figure C.34: North Wall – East End

Figure C.35: North Wall – Header connection W

Figure C.36: North Wall – Header connection E

Figure C.37: West Wall – North End

Figure C.38: West Wall – Door stud connection
Vented Attic Framing

Figure C.39: Attic framing with test connections

Figure C.40: Post to ceiling joist connection

Figure C.41: Post to cross brace connection

Figure C.42: Eave connection

Figure C.43: Ridge Connection
Iroquois Point Coastal – 13 Month Condition – August 13, 2003

Test Connection Locations

Figure C.44: Location 1 – Interior Wall

Figure C.45: Location 2 – Vented Attic

Figure C.46: Location 3 – Uncovered Crawl space

Figure C.47: Location 4 – Covered crawl space

Figure C.48: Location 5 – Exterior Rack

Figure C.49: Location 5 – Exterior Rack end view
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Crawl space cripple wall

Figure C.50: Cripple Wall – NE corner

Figure C.51: Cripple Wall – SE corner

Figure C.52: Cripple Wall – NE corner top

Figure C.53: Cripple Wall – SE corner top

Figure C.54: Cripple Wall – NE corner bottom

Figure C.55: Cripple Wall – SE corner bottom
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Crawl space posts

Figure C.56: SW Post
Figure C.57: NW Post

Figure C.58: SW Post top
Figure C.59: NW Post top

Figure C.60: SW Post base
Figure C.61: NW Post base
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Floor Joist Framing – Specimen exposure 7 Months

Figure C.62: Location 3 – Uncovered joists
Figure C.63: Location 3 – test connections
Figure C.64: Location 3 – connection fasteners
Figure C.65: Location 4 – Enclosed joists
Figure C.66: Location 4 – connection fasteners
Figure C.67: Exposed joist connection
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Interior Wall Framing – Specimen exposure 7 Months

Figure C.68: Location 1 – Interior wall

Figure C.69: Location 1 – Top track connections

Figure C.70: Location 1 – connection fasteners

Figure C.71: 7 Month exterior connections added
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Vented Attic Framing – Specimen exposure 7 Months

Figure C.72: Location 2 – Attic

Figure C.73: Location 2 – test connections

Figure C.74: Location 2 – Ridge truss connection

Figure C.75: Location 2 – Ridge truss connection

Figure C.76: Location 2 – Truss bottom connection

Figure C.77: Truss bottom connection
Iroquois Point Coastal – 20 Month Condition – March 18, 2004

Location 5 – Exterior specimen exposure 7 Months

Figure C.78: Location 5 – Test connections

Figure C.79: Location 5 – connection fasteners

Figure C.80: 7 Month test connection set

Figure C.81: 7 Month exterior exposure

Figure C.82: Location 5 – Steel and zinc coupons
D. Appendix D

MCBH Inland - Field Enclosure Photographs

2. Crawl Space Inspection – April 2, 2002 – 5 Months
4. Full Structure Inspection - March 6, 2003 - 16 Months
5. Full Structure Inspection – August 11, 2003 – 21 Months – Coupons installed
6. Connection Specimen Condition – September 23, 2003 – 1.5 Month exposure
8. Connection Specimen Condition – March 11, 2004 – 7 Month exposure
Corrosion of Galvanized Fasteners
Final Report

University of Hawaii
Steel Framing Alliance

MCBH Inland – Construction – Nov-Dec 2001

Figure D.1: NE elevation during construction

Figure D.2: SW elevation during sheathing

Figure D.3: SW cripple wall tie-down

Figure D.4: NW cripple wall tie-down

Figure D.5: Joist stiffeners on cripple wall

Figure D.6: Exposed and covered joists
Figure D.7: NE post and brace

Figure D.8: Interior wall and roof framing

Figure D.9: Roof framing

Figure D.10: Roof truss eave connection

Figure D.11: NE elevation after completion

Figure D.12: East elevation with weather station
MCBH Inland – 5 Month Condition – April 2, 2002

Crawl Space – Posts and Cripple Wall

Figure D.13: SW end of cripple wall
Figure D.14: NW end of cripple wall

Figure D.15: NE post – top
Figure D.16: SE post - top

Figure D.17: NE post - base
Figure D.18: SE post - base
MCBH Inland – 5 Month Condition – April 2, 2002

Floor Framing

Figure D.19: Joist ends bearing on cripple wall

Figure D.20: Exposed and covered joist - West

Figure D.21: Exposed and covered joists - East

Figure D.22: Joist and double joist over post
MCBH Inland – 16 Month Condition – March 6, 2003

Crawl Space Posts and Cripple Wall

Figure D.23: SW corner cripple wall base
Figure D.24: NW corner cripple wall base

Figure D.25: NE corner post base
Figure D.26: SE corner post base
MCBH Inland – 16 Month Condition – March 6, 2003

Floor Joists

Figure D.27: SW corner exposed joists
Figure D.28: NW exposed and covered joists
Figure D.29: NE exposed and covered joists
Figure D.30: SE exposed joists
Figure D.31: Joist stiffener over cripple wall
Figure D.32: Joist midspan
MCBH Inland – 16 Month Condition – March 6, 2003

Interior Wall Framing – Lap siding without vapor barrier

Figure D.33: E wall – Lap siding w/o vapor barrier
Figure D.34: E wall – Studs and top track
Figure D.35: E wall – Stud to top track connection
Figure D.36: E wall – Load path tie-down
MCBH Inland – 16 Month Condition – March 6, 2003

Interior Wall Framing – Plywood sheathing without vapor barrier

Figure D.37: S wall – plywood w/o vapor barrier

Figure D.38: S wall – plywood with insulation

Figure D.39: S wall – East header connection

Figure D.40: S wall – West header connection

Figure D.41: S wall – Stud to top track connection
MCBH Inland – 16 Month Condition – March 6, 2003

Interior Wall Framing – Lap Siding with Vapor Barrier

Figure D.42: N wall – Lap siding with vapor barrier

Figure D.43: N wall – Lap siding with insulation

Figure D.44: N wall – Header connection

Figure D.45: N wall – Top track connections

Figure D.46: N wall – Stud to top track connection
MCBH Inland – 16 Month Condition – March 6, 2003

Vented Attic - Roof Framing

Figure D.47: Typical roof truss

Figure D.48: Roof truss ridge connection

Figure D.49: Roof truss connection

Figure D.50: Roof truss fasteners

Figure D.51: Roof truss eave connection
MCBH Inland – 21 Month Condition – August 11, 2003

Crawl Space

Figure D.52: SW corner cripple wall

Figure D.53: NW corner cripple wall

Figure D.54: SW Cripple Wall base connection

Figure D.55: NW Cripple Wall base connection

Figure D.56: NE Post base

Figure D.57: SE Post base
MCBH Inland – 21 Month Condition – August 11, 2003

Crawl Space – Floor Joists

Figure D.58: Exposed floor joists

Figure D.59: Floor joist end connections

Figure D.60: Test coupons in location 6 - exposed

Figure D.61: Test coupons in location 7 - enclosed
MCBH Inland – 21 Month Condition – August 11, 2003

Interior Wall Framing – without vapor barrier

Figure D.62: Loc. 2 – lap siding w/o vapor barrier
Figure D.63: Loc. 1 – plywood w/o vapor barrier
Figure D.64: Location 2 test connections
Figure D.65: Location 1 test connections
MCBH Inland – 21 Month Condition – August 11, 2003

Interior Wall and Roof Framing

Figure D.66: Location 3 – wall with vapor barrier

Figure D.67: Location 4 – roof framing

Figure D.68: Location 3 – test connections

Figure D.69: Location 4 – test connections
MCBH Inland – 21 Month Condition – August 11, 2003

Exterior Test Connections

Figure D.70: Location 7 – exterior test connections

Figure D.71: Location 7 – exterior test connections

Figure D.72: Chloride Candle and shield

Figure D.73: Chloride Candle
MCBH Inland – 24 Month Condition – November 11, 2003

Exterior Test Connections – 3 Month Exposure

Figure D.74: Location 7 – 3 Month Exposure

Figure D.75: Location 7 – 3 Month exp fasteners

Figure D.76: Close-up of 3 Month exposure

Figure D.77: Steel and zinc coupons – 3 Months
MCBH Inland – 28 Month Condition – March 11, 2004

Crawl Space Cripple Wall

Figure D.78: Cripple Wall – SW corner

Figure D.79: Cripple Wall – NW corner

Figure D.80: Cripple Wall Top – SW corner

Figure D.81: Cripple Wall Top – Joist connection

Figure D.82: Cripple Wall Base – SW corner

Figure D.83: Cripple Wall Base – NW corner
MCBH Inland – 28 Month Condition – March 11, 2004

Crawl Space Posts

Figure D.84: Post – NE corner

Figure D.85: Post – SE corner

Figure D.86: Post Top – NE corner

Figure D.87: Post Top – SE corner

Figure D.88: Post Base – NE corner

Figure D.89: Post Base – SE corner
Open Crawl Space Floor Joists

Figure D.90: Location 5 specimens - open crawl

Figure D.91: Joists and specimens – open crawl

Figure D.92: Joist end connection – open crawl

Figure D.93: Joist end stiffener- open crawl

Figure D.94: Location 5 specimens – open crawl

Figure D.95: 7 Month exterior exposure specimens
MCBH Inland – 28 Month Condition – March 11, 2004

Covered Crawl Space Floor Joists

Figure D.96: Joists and specimens – covered crawl
Figure D.97: Joists and specimens – covered crawl
Figure D.98: Connection fasteners – covered crawl
Figure D.99: 7 Month exterior specimens added
Figure D.100: 7 Month exterior exposure specimens
Figure D.101: 7 Month exterior fasteners
MCBH Inland – 28 Month Condition – March 11, 2004

Interior Wall Framing – Plywood with vinyl siding

Figure D.102: Location 1 - S wall - plywood
Figure D.103: Location 1 – corner connection
Figure D.104: Location 1 header connection
Figure D.105: Location 1 header connection
Figure D.106: Location 1 – test connections
Figure D.107: 7 Month exterior connections added
MCBH Inland – 28 Month Condition – March 11, 2004

Interior Wall Framing – Lap siding without vapor barrier

Figure D.108: Location 2 - E wall – Lap siding

Figure D.109: Location 2 – test specimens

Figure D.110: Location 2 – top plate connection

Figure D.111: Location 2 – top plate connection

Figure D.112: Location 2 – test connections

Figure D.113: 7 Month exterior connections added
MCBH Inland – 28 Month Condition – March 11, 2004

Interior Wall Framing – Lap siding with vapor barrier

Figure D.114: Location 3 - N wall – vapor barrier

Figure D.115: Location 3 – corner connection

Figure D.116: Location 3 – Header connection

Figure D.117: Location 3 – Header connection

Figure D.118: Location 3 – ext connections added

Figure D.119: 7 Month exterior connections added
MCBH Inland – 28 Month Condition – March 11, 2004

Vented Attic Framing – Location 4

Figure D.120: Location 4 – test connections
Figure D.121: Location 4 – top truss connection
Figure D.122: Location 4 – connection fasteners
Figure D.123: Location 4 – bottom truss connection
Figure D.124: Location 4 – ext connections added
Figure D.125: 7 Month exterior connections added
MCBH Inland – 28 Month Condition – March 11, 2004

Exterior test connections – Location 7

Figure D.126: Location 7 – test connections

Figure D.127: Location 7 – fasteners threads

Figure D.128: Location 7 – fasteners heads

Figure D.129: Location 7 – test connection set

Figure D.130: Location 7 – test set fasteners

Figure D.131: 7 Month exterior fasteners
E. Appendix E

MCBH Coastal - Field Enclosure Photographs

2. Crawl Space Inspection – April 2, 2002 – 5 Months
4. Full Structure Inspection - March 6, 2003 - 16 Months
5. Full Structure Inspection – August 11, 2003 – 21 Months – Coupons installed
6. Connection Specimen Condition – September 23, 2003 – 1.5 Month exposure
8. Connection Specimen Condition – March 11, 2004 – 7 Month exposure
MCBH Coastal – Construction – Nov-Dec 2001

Figure E.1: Concrete Footings

Figure E.2: Foundation location

Figure E.3: Framing on site

Figure E.4: Foundation Tiedowns

Figure E.5: Completed Enclosure - NE Elevation

Figure E.6: Completed Enclosure – SE Elevation
MCBH Coastal – 5 Month Condition – April 2, 2002

Crawl Space – Posts and Cripple Wall

Figure E.7: Top of NW post

Figure E.8: Bottom of NE post

Figure E.9: Bottom of NW post

Figure E.10: Bottom of Cripple Wall - SW

Figure E.11: Bottom of Cripple Wall - SE

Figure E.12: Cripple Wall Tiedown
MCBH Coastal – 5 Month Condition – April 2, 2002

Crawl Space Joists

Figure E.13: Exposed Floor Joist – S Wall

Figure E.14: Exposed Floor Joist Stiffener

Figure E.15: Double Joist at SW corner

Figure E.16: Exposed Joist – N end - Center

Figure E.17: Exposed Joist – N end - E of center

Figure E.18: Exposed Joist - Midspan
MCBH Coastal – 10 Month Condition – September 2002

Crawl Space – Exposed Joists

Figure E.19: Exposed Joists and Cripple Wall

Figure E.20: Exposed Joists and Wall - SW

Figure E.21: Exposed Joists Midspan – West
MCBH Coastal – 16 Month Condition – March 6, 2003

Crawl Space Posts and Cripple Wall

Figure E.22: Post Base – NW corner

Figure E.23: Post Base – NE corner

Figure E.24: Cripple Wall Base – SE corner

Figure E.25: Cripple Wall Base – SW corner
MCBH Coastal – 16 Month Condition – March 6, 2003

Crawl Space Floor Joists

Figure E.26: Exposed Floor Joists - SE

Figure E.27: Exposed Floor Joists - South

Figure E.28: Exposed Floor Joists - SW

Figure E.29: Exposed Floor Joists - NW

Figure E.30: Exposed Floor Joists - NE

Figure E.31: Exposed Floor Joists – Midspan - E
MCBH Coastal – 16 Month Condition – March 6, 2003

Floor Joist Details

Figure E.32: Joist connection at cripple wall

Figure E.33: Joist stiffener at cripple wall

Figure E.34: Joist stiffener at South end

Figure E.35: Joist connection at South end

Figure E.36: Exposed joist detail at midspan

Figure E.37: Exposed joist soffit at midspan
MCBH Coastal – 16 Month Condition – March 6, 2003

Enclosed Floor Joists

Figure E.38: Enclosed floor joist punch-out

Figure E.39: Enclosed floor joist detail
MCBH Coastal – 16 Month Condition – March 6, 2003

Interior Wall Framing – Lap siding without vapor barrier

Figure E.40: W wall – Lap siding w/o vapor barrier

Figure E.41: W wall – Lap siding with insulation

Figure E.42: W wall header connection

Figure E.43: W wall top track

Figure E.44: W Wall top track connection

Figure E.45: W wall lap siding w/o vapor barrier
MCBH Coastal – 16 Month Condition – March 6, 2003

Interior Wall Framing – Plywood sheathing without vapor barrier

Figure E.46: E wall – Plywood w/o vapor barrier

Figure E.47: E wall – Header connection

Figure E.48: E wall – Top track

Figure E.49: E wall – Sheathing & stud fasteners
MCBH Coastal – 16 Month Condition – March 6, 2003

Interior Wall Framing - with vapor barrier

Figure E.50: N wall – vapor barrier & insulation
Figure E.51: N wall – top track
Figure E.52: N wall – stud to top track connection
Figure E.53: N wall – stud and siding fasteners
MCBH Coastal – 16 Month Condition – March 6, 2003

Vented Attic Framing

Figure E.54: Vented eave overhang

Figure E.55: Roof truss

Figure E.56: Ridge connection

Figure E.57: Ridge connection fasteners

Figure E.58: Eave connection fasteners

Figure E.59: Ceiling to king post fasteners
MCBH Coastal – 21 Month Condition – August 11, 2003

Crawl Space – Posts and Cripple Wall

![Figure E.60: Post Base – NW corner](image)
![Figure E.61: Post Base – NE corner](image)

![Figure E.62: Cripple Wall Base – SE corner](image)
![Figure E.63: Cripple Wall Base – SW corner](image)

![Figure E.64: Close-up SE corner](image)
![Figure E.65: Close-up cripple wall tie-down](image)
MCBH Coastal – 21 Month Condition – August 11, 2003

Crawl Space Floor Joists

Figure E.66: Exposed Joists – looking North

Figure E.67: Exposed Joists – looking South

Figure E.68: Exposed Joists – SW corner

Figure E.69: Exposed Joists - Midspan

Figure E.70: Exposed Joists – Close-up of fastener

Figure E.71: Exposed Joists – Midspan corrosion
MCBH Coastal – 21 Month Condition – August 11, 2003

Floor Joist Details

Figure E.72: Joists bearing on cripple wall

Figure E.73: Joist stiffener over cripple wall stud

Figure E.74: Joist stiffener at North end

Figure E.75: Double joist at cripple wall post

Figure E.76: Double joist at NW post

Figure E.77: Cripple wall below covered joists
Corrosion of Galvanized Fasteners
Final Report
University of Hawaii
Steel Framing Alliance

MCBH Coastal – 21 Month Condition – August 11, 2003

Covered Floor Joists

![Exposed and covered floor joists](image1.png)

Figure E.78: Exposed and covered floor joists

![Covered joist and fastener](image2.png)

Figure E.79: Covered joist and fastener

![Covered Floor Joist – North end](image3.png)

Figure E.80: Covered Floor Joist – North end

![Covered Floor Joist – South end](image4.png)

Figure E.81: Covered Floor Joist – South end

![Corrosion around opening in joist](image5.png)

Figure E.82: Corrosion around opening in joist

![Covered joist on exposed top track](image6.png)

Figure E.83: Covered joist on exposed top track
MCBH Coastal – 21 Month Condition – August 11, 2003

Interior Wall Framing – Lap siding without vapor barrier

Figure E.84: W wall – Lap siding w/o vapor barrier

Figure E.85: W Wall – Lap siding with insulation

Figure E.86: W wall header connection - S

Figure E.87: W wall header connection - N

Figure E.88: W wall – S corner stud fasteners

Figure E.89: W wall – top track detail
MCBH Coastal – 21 Month Condition – August 11, 2003

Interior Wall Framing – Plywood sheathing without vapor barrier

Figure E.90: E wall – Plywood w/o vapor barrier
Figure E.91: E wall – Plywood with insulation
Figure E.92: E wall – Header and stud fasteners
Figure E.93: E wall – Header connection
Figure E.94: E wall – N corner stud fasteners
Figure E.95: E wall – top track fasteners
MCBH Coastal – 21 Month Condition – August 11, 2003

Interior Wall Framing – with vapor barrier

Figure E.96: N wall – vapor barrier & insulation

Figure E.97: N wall – with vapor barrier

Figure E.98: N wall – top track connection

Figure E.99: N wall – Truss tie-down connection

Figure E.100: N wall – Header and stud connection
MCBH Coastal – 21 Month Condition – August 11, 2003

Vented Attic Framing

Figure E.101: Truss Connection

Figure E.102: Truss Connection – fastener heads

Figure E.103: Ridge connection

Figure E.104: Ridge connection fasteners

Figure E.105: Eave connection fastener heads

Figure E.106: Eave connection fastener threads
MCBH Coastal – 21 Month Connection Placement – August 11, 2003

Placement of Test Connection Specimens

Figure E.107: Location 1 – East wall

Figure E.108: Location 2 – North wall

Figure E.109: Location 3 – West Wall

Figure E.110: Location 4 – Attic
MCBH Coastal – 21 Month Connection Placement – August 11, 2003

Placement of Test Connection Specimens

Figure E.111: Location 5 – Exposed crawl space

Figure E.112: Location 6 – Covered crawl space

Figure E.113: Location 7 – External specimens

Figure E.114: External connection specimen rack

Figure E.115: External specimen rack
MCBH Coastal – Connection Specimen Condition – September 23, 2003

42 Day exposure

Figure E.116: Location 1 – East Wall

Figure E.117: Location 2 – North Wall

Figure E.118: Location 3 – West Wall

Figure E.119: Location 4 - Attic

Figure E.120: Location 5 – Exposed Crawl Space

Figure E.121: Location 6 – Covered Crawl Space
MCBH Coastal – Connection Specimen Condition – September 23, 2003

42 Day exposure

Figure E.122: Location 7 – External screw threads

Figure E.123: Location 7 – External screw heads

Figure E.124: Location 7 – External specimens
MCBH Coastal – 28 Month Condition – March 11, 2004

Crawl Space Cripple Wall

Figure E.125: Cripple Wall - SE corner
Figure E.126: Cripple Wall – SW corner
Figure E.127: Cripple Wall Top – SE corner
Figure E.128: Cripple Wall Top – SW corner
Figure E.129: Cripple Wall Base – SE corner
Figure E.130: Cripple Wall Base – SW corner
MCBH Coastal – 28 Month Condition – March 11, 2004

Crawl Space Posts

Figure E.131: Post – NW corner

Figure E.132: Post – NE corner

Figure E.133: Post Top – NW corner

Figure E.134: Post Base – NE corner

Figure E.135: Post Base – NW corner
MCBH Coastal – 28 Month Condition – March 11, 2004

Crawl Space Floor Joists

Figure E.136: Exposed Floor Joists - SW

Figure E.137: Exposed Floor Joists – Close-up

Figure E.138: Joist Connection at cripple wall

Figure E.139: Joist stiffener at cripple wall

Figure E.140: Joist stiffener at South end

Figure E.141: Joist connection at South end
MCBH Coastal – 28 Month Condition – March 11, 2004

Interior Wall Framing – Lap siding without vapor barrier

Figure E.142: W wall – Lap siding w/o barrier

Figure E.143: W wall - Lap siding with insulation

Figure E.144: W wall header connection - left

Figure E.145: W wall header connection - right

Figure E.146: W wall corner connection

Figure E.147: W wall top track connection
MCBH Coastal – 28 Month Condition – March 11, 2004

Interior Wall Framing – Plywood and lap siding with vapor barrier

Figure E.148: E wall – Plywood w/o barrier
Figure E.149: E wall - Header connection

Figure E.150: E wall – Test connections
Figure E.151: N wall – vapor barrier & insulation

Figure E.152: N wall – Test connections
Figure E.153: N wall - top track connections
MCBH Coastal – 28 Month Condition – March 11, 2004

Vented Attic Framing

Figure E.154: Attic test connections
Figure E.155: Ridge connection
Figure E.156: Roof truss connection
Figure E.157: Ceiling to king post fasteners
Figure E.158: Roof truss connection
Figure E.159: Fastener heads at truss connection
Test connections

Figure E.160: Open crawl space

Figure E.161: Open crawl space – close-up

Figure E.162: Open crawl space – steel coupons

Figure E.163: Open crawl space – zinc coupons

Figure E.164: Covered crawl space

Figure E.165: Covered crawl space – connections
MCBH Coastal – 7 Month Connection Condition – March 11, 2004

Exterior test connections

Figure E.166: Exterior connections – 7 months

Figure E.167: Exterior connections - Threads

Figure E.168: Exterior connections - Heads
F. Appendix F

Literature Review Report

December 27, 2000
CORROSION OF GALVANIZED FASTENERS USED IN COLD-FORMED STEEL FRAMING

LITERATURE REVIEW REPORT

December 27, 2000

Section I - Introduction

This research program will investigate the potential for corrosion of galvanized fasteners used in cold-formed steel framing (CFSF) by exposing test samples to a variety of environmental conditions frequently found in Hawaii. The results of this research will aid in the evaluation of galvanized CFSF fasteners in various exposure conditions.

The project was initiated on September 26, 2000 by an award from the Department of Housing and Urban Development (HUD) to the North American Steel Framing Alliance (NASFA). The project includes a research effort to study the effects of corrosion of galvanized fasteners on CFSF connection behavior, followed by a final report and development of a Practice Guide for use by industry. NASFA has subcontracted the research component of this study to the Civil Engineering Department at the University of Hawaii (UH), a non-profit State of Hawaii educational institution. The principal investigator at UH is Dr. Ian N. Robertson, Associate Professor of Structural Engineering.

The project has a two-year duration with various scheduled deliverables, including a literature review report and quarterly progress reports. This literature review report presents research literature relevant to this study. After a general introduction to galvanic corrosion and cathodic protection provided by zinc coatings on steel, the report focuses on research performed on connections in CFSF structures.

Section II - Galvanic Corrosion

Steel stores energy when it is changed from its natural state into the metallic form used in industry. This energy later returns in the form of corrosion. Corrosion is therefore the natural transformation of manmade metals to their original state (National Association of Corrosion Engineering, 1984).

Galvanizing of steel is the most economical and effective way to protect steel. This galvanizing is an adherent coating of zinc and zinc-iron alloys on the surface of steel that provides long term protection from corrosion. Galvanizing of steel is accomplished by immersing the member in molten zinc. This immersion
forms a metallurgical bond between the steel and zinc coating. The standard galvanized coating is composed of pure zinc and a very small amount of aluminum. Zinc-rich paints that coat the steel framing must satisfy three important conditions for the galvanic process to occur. The zinc particles must be in electrical contact with each other. The zinc particles must also be in electrical contact with the steel. Finally, a continuous electrolyte must exist between the zinc particles and steel (AISI, 1996; Zhang, 1997).

The zinc coating applied to the steel provides a physical barrier as well as a cathodic protection against corrosion. In most environments, zinc corrodes less than steel. The rate of corrosion of zinc in atmospheric conditions is less than one tenth of that for steel (Zhang, 2000b). In fact, atmospheric conditions particularly detrimental to steel corrosion are those in which zinc coatings have been shown to be most effective (Zhang, 2000b). These conditions include marine and industrial atmospheric exposure.

As explained by Zhang (2000a), "galvanized (ie. zinc coated) steel is a typical example of metallic coating that provides a barrier layer to protect the steel and also sacrificially protects the locations where discontinuities occur in the coating." He adds that "... galvanic corrosion resulted in a reduction of the corrosion of steel by 3 times in rural, 40 times in industrial, and 300 times in seacoast industrial atmospheres." This galvanic effect is caused because zinc acts as the sacrificial anode protecting steel, the cathode. The zinc coating on the steel members carries out the cathodic protection because it becomes the sacrificial material. This sacrificial corrosion of the zinc coating is generated because zinc is more electronegative than steel.

This galvanic protection is effective over a short distance from a discontinuous edge of the zinc coating. This Galvanic Protection Distance (PD) varies depending on the environmental conditions. A PD of up to 5 mm was observed under full immersion in deionized water. In atmospheric conditions the PD is considerably smaller, and depends on the presence of an electrolyte to facilitate anodic sacrificial corrosion thus protecting neighboring cathodic material (Zhang, 2000c). In cold-formed steel framing there are often discontinuities in the zinc coating. This is particularly evident at cut ends, drilled holes and connections. It is important that the protection distance is adequate to prevent rapid corrosion of exposed steel surfaces.

Although a galvanized coating is a great protection and cathodic barrier, the zinc coating, that is part of the galvanized coating, corrodes slowly over time. The galvanic corrosion rate of zinc and extent of galvanic protection of steel is based on dimensions and environmental factors. The type of wetness and concentration of atmospheric pollutants affect the rate of corrosion of zinc. This corrosion directly affects the durability of the galvanized steel, because it leaves the steel underneath
vulnerable to corrosion attack (AISI, 1996; Zhang, 1997). According to Zhang (2000d), "the high corrosion resistance of zinc is largely due to the formation of a stable, tenacious and compact corrosion product layer during the corrosion processes in atmospheric environments. The protective corrosion product layer is formed under the effect of cyclic weathering over a period of time." He points out that for accurate simulation of field conditions during accelerated laboratory testing, it is important that wetting and drying cycles be followed to allow the corrosion product layer to form. "The corrosion rates will be high under the conditions where tenacious and compact corrosion (products) cannot form" (Zhang, 2000d) such as during a continuous salt spray test.

Prediction of the life of a zinc coated steel member depends on various properties of the atmospheric environment. According to Zhang and Hwang (2000), "the corrosion rate of zinc in atmospheric environments may vary from as low as about 0.1 µm/year in indoor environments to as high as more than 10 µm/year in some industrial or marine environments This means that a G60 galvanized steel, about 13 µm coating each side, would have a corrosion life of more than 100 years in the least corrosive environment but only for about one year in an extremely corrosive environment."

Section III - Cold-Formed Steel Construction

Cold-formed light gauge steel frames have the same corrosion issues as other types of construction materials. Moisture and pollutants can reduce the life of the coated steel as well as the fasteners. The configuration of a steel track acts similar to a channel, which allows rainwater to collect prior to construction. After construction the steel track can be located in walls that collect moisture from the ambient relative humidity. This collection of the water can produce corrosion on the track. Corrosion of the steel in the frame of a building is undesirable deterioration and has adverse effects on the structural integrity of the framing (LGSEA, 1999).

Although most galvanized steel framing in residential homes is enclosed in walls, corrosion can still occur. In time, a moisture film can form on the galvanized steel on account of the relative humidity in the air. The degree of corrosion depends on the severity of the humidity in the atmosphere. When the humidity is above 70 percent, moisture will precipitate on the steel surface (Zhang, 1997).

Light gauge steel connections are primarily constructed with externally threaded fasteners. Tapping screws are capable of drilling holes into the metal with their own threads. There are two types of tapping screw that are used in the construction of residential framing, namely self-drilling screws and self-piercing screws. When choosing the screws for the structure, two basic questions must be answered.
The first question is what two materials are going to be joined. The two possible answers are steel to steel and steel to a rigid material. The answer to this question allows the engineer to choose a head style from the many different types available. The steel to steel connections requires a head with a bearing surface on the top of the material being connected. The hex washer head and the pancake head are the most frequently used in steel to steel construction.

The second question is what is the total thickness of the material being connected. The total thickness of the material that the screw is being fastened into is needed to determine the point type of the screw. The two most commonly used point types in construction are self-drilling and self-piercing (LGSEA, 1997).

The durability of the fasteners is hard to determine and design manuals do not offer substantial guidance. The life of the zinc coating on fasteners depends on the coating thickness and the environment to which it is exposed. Atmospheric and accelerated tests are good guides for the rating and coating of fasteners used in construction. Both of the atmospheric and accelerated tests should be performed, because some coating systems passed or performed well in accelerated tests did very poor in real world applications, and vise versa. (LGSEA, 1999; Roberts 1999).

Accelerated test methods for fasteners include the salt spray test. This is described in ASTM standard B-117. This practice provides a controlled corrosive environment, which produces relative corrosion resistance information for coated metals. The salt spray test apparatus consists of a fog chamber, a salt solution reservoir, a supply of compressed air, stabilizing nozzles, specimen supports, and necessary means of control. Continuous exposure to salt spray without drying periods to allow corrosion products to form a protective layer may not accurately represent atmospheric corrosion conditions (Zhang, 2000d).

The Mebon Prohesion test is similar to the Salt Spray (fog) test but it includes a drying cycle. This wetting and drying simulates long term natural exposure. The third test is the Kesternich test that is used to test heavy industrial exposure. The test involves hanging the samples in an environment of sulfur dioxide and warm water alternated with ambient conditions. The light gauge steel buildings however are exposed to a combination of the salt spray, Kesternich, and humidity all at the same time (LGSEA, 1999; ASTM, 1998).

Section IV - Atmospheric Exposure

Atmospheric corrosion is the most predominant type of corrosion for zinc coated steel. This type of corrosion can be tested in both exposure tests and simulated laboratory tests. The type of wetting, which includes duration and form of
wetness, is important in determining corrosion. An outdoor type of wetting occurs when the coated steel is exposed to rain before erection. A metal that goes through cycles of wetting and drying will allow pollutants and corrosion products to dry on the exposed metal. In seacoast areas, sea salts are deposited on the zinc-coated metal by wind and raindrops (Zhang, 1997).

Exposure tests can be accomplished by building shelters at different distances from the ocean and observing these structures for a minimum of two years. The exposure sites should vary in topography, winds, and breaking surf conditions. A FEMA study of galvanized metal connectors used in timber framed housing construction identified three corrosion locations (FEMA 1996). Oceanfront buildings (less than 100 meters from the shore) have ocean salts and humidity that accelerate the corrosion rate of the cold-formed steel framing. Buildings that are 100 to 1000 meters from the shoreline are also prone to corrosion, but at a reduced rate. Buildings that are farther inland are not prone to ocean spray and therefore experience limited corrosion (FEMA 1996; Roberts 1999).

This report also identifies five types of corrosion exposure for metal connectors in a building. In order to study all possible exposure conditions, test shelters should be designed with each of these types of exposure.

The first type of corrosion exposure is the boldly exposed exterior portion of the shelter. This exposure consists of exterior connectors that are fully exposed to the elements. The side of the shelter that faces the ocean is likely to corrode faster than the sections facing away from the ocean. Although the connectors and exterior walls are coated with large amounts of salt spray, the exterior sections are also exposed to sunlight and rain. This exposure reduces the rate of corrosion because the walls and connectors are fully dried between wettings. Drying slows the rate of corrosion (FEMA 1996).

The second type of corrosion exposure is a partially sheltered exterior exposure. This exposure consists of crawl spaces, underneath exposed roof eaves, or exterior storage areas. The corrosion rate of this exposure is worse than that of the exterior exposure. Although the partially sheltered exterior exposures receive almost as much salt spray as bold exposures, they do not receive the cleansing rain. An additional factor causing the higher rate of corrosion is that this exposure condition has a higher duration of surface wetness. Certain levels of surface wetness can cause accelerated corrosion (FEMA 1996).

A vented enclosed exposure is classified as attic spaces. The corrosion in this area varies with the location of the connector. Connectors near the exterior vents behave similar to the partially sheltered exterior exposure. For connectors that are away from the vents, or covered by insulation; the corrosion rate is lower.
Unvented enclosed exposure similar to the wall framing and closed floor system has limited airflow and incoming salt spray. The corrosion rate for this unvented exposure is expected to be lower than the three previous exposure conditions.

The last enclosure condition is the interior living space exposure. In many locations, this area is sealed from most salt spray. The heated and cooling of this space reduces the interior humidity needed for corrosion. This exposure should have the lowest corrosion rate of all the exposures (FEMA 1996). However, in Hawaii and other tropical locations, through flow of air is used to moderate internal temperature rather than air-conditioning and heating. This will permit ingress of moisture and air-borne salt, and may accelerate corrosion of exposed connections.

Section V - Fastener Corrosion

Australian Standard 3566- Screws - Self Drilling – For the building and Construction Industries was recently adopted in Australia as the durability standard for building fasteners. This standard reviews the durability of fasteners and discourages the use of low-cost poor quality fasteners in buildings. The standard was developed and adopted because sheet metal protection systems had improved to the point where fastener life was often the determining factor in the longevity of a steel clad building.

This Australian standard evaluates the performance of fasteners by conducting accelerated weathering test. The various tests that fasteners must endure are fifteen cycles of Kesternick testing, one thousand hours of salt spray testing, two thousand hours of QUV and 1000 hours of humidity cabinet testing. Hot-dip Galvanized screws are exempt from the accelerated testing if they have an average 40 micron zinc thickness with a minimum zinc thickness of 35 microns. The standard also specifies that 40 micron zinc coated fasteners should be used for tropical high humidity environments. The standard classifies fasteners into three categories. Class 1 screws are used for internal applications only. Class two screws are used for general use, but not externally. Class three screws are for external use, but are not approved for corrosive external environments.

The Newcastle Branch of the Australian Corrosion Association conducted a major seminar on Preventing Corrosion of Building Fasteners in Australia to discuss the standards and important points in reducing the effects of atmospheric corrosion. Important presentations at this seminar are summarized in the August 1994 edition of Corrosion Management (1994).

Udo Buecher of BHP Sheet & Coil presented a paper on fasteners for steel cladding (Corrosion Management, 1994). Before the new standards, roofs were
fixed with fasteners with yellow chromate 8 micron zinc-plated self-drilling screws, but they presented poor corrosion resistance. The yellow chromate zinc-plated fasteners presented a poor performance in one to five years. In certain environments, corrosion of cladding can occur near the fasteners. Low quality plated products with reduced zinc-coating thickness represent a weak link in connections; therefore, adequate corrosion resistance and compatibility should be used to choose the correct fasteners. Inadequate corrosion resistance of fasteners were found to be problematic when the screws were not compatible with the cladding material, and when the environment of the installation was highly corrosive (Corrosion Management, 1994).

A recent Japanese study tested the corrosion resistance of zinc-coated sheets and connections in steel-framed houses (Honda & Nomura, 1999). The researchers subjected various types of zinc-coated steel sheets to outdoor and indoor environments. They report that hot-dip galvanized steel sheet corrosion rate was low, as anticipated. The corrosion rate of the indoor sheets was considerably slower than that of the outdoor sheets. These results confirmed that a steel-framed house has a mild corrosion environment (Honda & Nomura, 1999).

The durability of joining methods applicable to steel-framed houses was also explored. Tests on the durability of self-tapping screw connections were conducted. Self-taping screws with a known coating thickness of 20 microns were used to join galvanized steel sheets. Each specimen consisted of two 150x 60mm steel sheets which were connected in a lap splice using two self-tapping screws. The maximum shear strength (from tension test on the connected plates) was measured before and after accelerated cyclic corrosion tests. The accelerated cyclic corrosion tests were conducted by exposing the specimens to daily cycles of salt spray, drying, wetting and freezing. The specimens were subjected to the cyclic corrosion testing for eight weeks. Every two weeks during this eight-week test the shear strength of the connected sheets was evaluated. The hot-dip galvanized steel sheets developed red rust after two weeks; and lost all zinc coating after four weeks. The self-tapping screws that connected the sheets showed signs of red rust after two weeks of testing. After four weeks of testing, the screws red rust had formed over the entire screw. However, the maximum shear strength of the tested connections only declined slightly after eight weeks of cyclic corrosion testing (Honda & Nomura, 1999).

Daudet (2000) reports on tests of cold-formed steel splice connections using self-drilling screws. The single-lap shear connections produced a failure normally known as tilting/bearing. The failure results from bearing failure of the steel plate adjacent to the screw and from tilting and eventual pull-out of the screw threads. Daudet reports a group effect which reduces the effectiveness of multi-screw connections from the strength anticipated for an equal number of individual screws. He found that connections with two screws oriented transverse to the loading
direction had similar strength to single screw connections, while two screws oriented longitudinally had a 20 percent reduction in strength.

As similar study by LaBoube and Sokol (2000) also identified a significant group effect. However, varying the pattern in which the screws were arranged did not have a substantial effect on the connection strength. Failure of the steel plates is possible in connections with a large number of screws with minimum spacing and edge distances.

Section VI - References and Additional Literature

Corrosion Management, 1994, "Preventing Corrosion of Building Fasteners" synopsis of presentations made at Australasian Corrosion Association seminar.

Additional Literature

ASTM C 954 - 98, 1998, "Standard Specification for Steel Drill Screws for the Application of Gypsum Panel Products of Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness", American Society for Testing and Materials.

ITW Buildex, 1997, "Management of Corrosion".

