Construction Methods, Details, and Tips for Plumbers and Electricians
INTRODUCTION

This guide will introduce both the plumbing and electrical trades to steel framing, while sharing the experience of industry veterans.

Steel framing has been the material of choice for commercial construction projects for many years because of its long-term durability and ability to withstand natural hazards like tornado and hurricane winds, earthquakes, wildfires and insect infestation. Since steel wall systems are designed so that trades can easily integrate their systems, cold-formed steel (CFS) has also served as the preferred material for commercial interior and curtain walls. All of these attributes are being employed in today’s construction market for single, multifamily and mid-rise structures with steel framing as the main structural element.

Cold-formed steel framing has five basic shapes that are rolled from sheet steel to form components that can be assembled into the structural framework of a building. The shapes are known by the acronym S-T-U-F-L, for Stud, Track, U-channel, Furring, and L-header.

FREQUENTLY ASKED QUESTIONS

1. CAN I USE THE SAME DRILL AND BITS THAT I USE WITH WOOD FOR PLUMBING AND ELECTRICAL RUNS IN STEEL FRAMES?

Forget about the drill! Factory installed punchouts in the webs of studs provide a ready pathway for horizontal utility runs. Plastic isolators are inserted in the punchouts (they snap right in) to separate and protect PEX and copper pipe.

Tip: Use the isolators or grommets to provide a recognizable and permanent route at job start—just snap them in at intervals as you move through the building planning the layout. A helper can drop back and fill in isolators and grommets in the intermediate studs.

2. WHERE ARE THE PUNCHOUTS LOCATED, AND DO THEY ALWAYS LINE UP?

Punchouts are located at 24 inches on center along the length of a stud or joist and begin at least 10 inches from either end. Punchouts will align because, like good carpenters, steel framers have been trained to incorporate utility subsystems into their layouts.
3 three

HOW LARGE ARE THE PUNCHOUTS?

Punchouts are sized to accept 1 ⅜ inches isolators. Actual punchout shape and size varies by manufacturer.

4 four

WHAT OTHER TOOLS DO I NEED FOR STEEL FRAMING?

Along with tools of your trade, you will need a variable speed, low rpm (0-2,500) screwgun, bits for the screwgun, a hole saw and drill. (See *Tools for the Trades*, page 5.)

5 five

ARE PIPE AND WIRE SHIELD METAL PLATES REQUIRED IN STEEL FRAMING?

Building codes specify that flanges and lips of studs, joists, and track cannot be cut so these will provide pipe and wire protection in lieu of shield plates in some applications. Because the code also requires shield plates to be a minimum thickness of 62 mils (.062 of an inch), the code official may require pipe shield plates on non-structural CFS studs, or thicknesses less than 62 mils where the punchout is within 1 ½ inches of the member’s edge. (See *Code at a Glance, IRC* P2603.2.1 and *NEC* 300.4(B), back cover.)

6 six

WHAT SCREWS SHOULD BE USED WITH BRACKETS, BOXES, AND SUPPORTS?

The screws that are used depend on the thickness of the steel framing material upon which they will be mounted. No. 6 self-piercing screws will suffice to penetrate steel members to thicknesses of 33 mils. Self-drilling screws will be required for steel thicknesses over 33 mils. Self-drillers are available in screws of No. 6 diameter in lengths up to 1 inch, so the location of the support accessory will determine the screw selection. The figure below shows the two most common screw point and head styles.

Tip: Hex head fasteners will be the easiest to drive home.

Fastener Point and Head Types

[Image of screw types]

7 seven

HOW CAN I DETERMINE THE THICKNESS OF CFS?

Ask the builder what thicknesses of steel were specified in the structure, or run some test screws before job start-up (have screws with both self-drilling and self-piercing points handy). Or, you can identify the thickness on the steel stud or joist. The following picture shows a typical CFS identification mark where the 600S162-54 indicates that the piece is 6.00 inches “stud shaped” by 1.62 inches (1 ⅝ inches) and 54 mils (thousands of an inch) in thickness.
Cold-Formed Steel Identification

There may be several different thicknesses of steel in one house. Make a point of knowing what thicknesses have been installed as interior and exterior walls and joists, and plan the layout to simplify the work by routing pipes and wires along steel members that are of lesser thickness whenever possible.

Tip: Keep plumbing pipes and drains out of exterior walls whenever possible. Routing pipes through interior walls protects them against freeze and leaves more of the exterior wall cavity free for insulation installation which promotes the energy efficiency of the building and the hot water supply system.

Minimum Thickness of Cold-Formed Steel

<table>
<thead>
<tr>
<th>Designation (mils)</th>
<th>Minimum Thickness (inches)</th>
<th>Reference Gauge Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18^</td>
<td>.018</td>
<td>25</td>
</tr>
<tr>
<td>27^</td>
<td>.027</td>
<td>23</td>
</tr>
<tr>
<td>30^</td>
<td>.030</td>
<td>22</td>
</tr>
<tr>
<td>33^</td>
<td>.033</td>
<td>20</td>
</tr>
<tr>
<td>43^</td>
<td>.043</td>
<td>18</td>
</tr>
<tr>
<td>54^</td>
<td>.054</td>
<td>16</td>
</tr>
<tr>
<td>68^</td>
<td>.068</td>
<td>14</td>
</tr>
<tr>
<td>97^</td>
<td>.0966</td>
<td>12</td>
</tr>
<tr>
<td>118^</td>
<td>.118</td>
<td>10</td>
</tr>
</tbody>
</table>

^ Nonstructural steel from Steel Stud Manufacturer’s Association (SSMA), Product Technical Information.
^ Structural steel from Table R505.2(2) of the IRC.
^ Structural Steel, The Right STUFL.
Squeeze the trigger using the third or fourth finger as the trigger finger (some models have two-fingered triggers).

An adjustable clutch and torque model with a maximum speed range of 0–2,500 rpm is the most highly-recommended screwgun for steel to steel connections. (Steel of lesser thickness, 33 mils and lower, require a 0–4,000 rpm gun.) The adjustable torque feature automatically stops the screwgun from continued spinning once the screw is properly seated. This prevents stripping and allows the user to concentrate on productivity. The reverse switch is used to remove incorrectly installed screws or screws that secure temporary bracing. A quick change bit chuck for holding bit tips will allow rapid removal/installation when switching hex- and Phillips head tips, the most common screw head configurations used on cold-formed steel members.

Bit tip holders are metal shafts that fit into the screwgun. A bit tip fits in the holder’s slot. Bit tip holders and drivers are often magnetized to hold the screws in place while driving.

Hex head drivers range in length from 2 ½ inches to 6 inches. The longer lengths are recommended for use with adjustable clutch screwguns. The added length allows access to hard-to-reach areas. Magnetic hex head drivers that are 9/16 inches in length are recommended for hex head screws.

Fastening Tools

<table>
<thead>
<tr>
<th>Screwgun – Adjustable Clutch/Torque; Industrial Grade</th>
<th>Bit Tips</th>
<th>Bit Tip Holders and Hex Head Drivers, Magnetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use: Steel to steel and sheathing to steel fastener seating</td>
<td>Use: Drive anchor for each screw head profile</td>
<td>Use: Seat bit tips</td>
</tr>
<tr>
<td>Max steel thickness: 33 to 97 mils</td>
<td>Max steel thickness: 97 mils</td>
<td>Max steel thickness: 97 mils</td>
</tr>
<tr>
<td>Cost: Corded $55; cordless $150–$250</td>
<td>Cost: $2</td>
<td>Cost: $2</td>
</tr>
<tr>
<td>Specs: 0-2500 rpm (var. speed); 5.4 amp motor; reversible with bit top holder release. (Use a 4000 rpm model for the non-structural thicknesses of steel; 30–18 mils.)</td>
<td>Specs: Hex head, or Phillips head</td>
<td>Specs: Hex head, or Phillips head</td>
</tr>
</tbody>
</table>

Cutting Tools

<table>
<thead>
<tr>
<th>1 3/8” Hole Saw</th>
<th>1-3/8” Hole Punch</th>
<th>Single Flute Unibits</th>
<th>Portable Plasma Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use: Cutting MEP holes in studs and joists</td>
</tr>
<tr>
<td>Max steel thickness: 97 mils</td>
<td>Max steel thickness: 33 mils</td>
<td>Max steel thickness: All</td>
<td>Max steel thickness: All</td>
</tr>
<tr>
<td>Cost: Starting at $20</td>
<td>Cost: Starting at $275</td>
<td>Cost: Starting at $25</td>
<td>Cost: Starting at $1,500</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Pipe Bracket</th>
<th>Pipe Insulator</th>
<th>Grommet</th>
<th>Standoff Bracket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use: Supporting and isolating supply line at stud punchouts</td>
<td>Use: Isolating and supporting pipes from steel in stud punchouts</td>
<td>Use: Protecting and supporting wires from sharp steel in stud punchouts</td>
<td>Use: Isolating and supporting wires in the middle of the stud</td>
</tr>
<tr>
<td>Max steel thickness: All</td>
<td>Max steel thickness: All</td>
<td>Max steel thickness: All</td>
<td>Max steel thickness: All</td>
</tr>
<tr>
<td>Cost: Starting at 20¢</td>
<td>Cost: Starting at 20¢</td>
<td>Cost: Starting at 15–20¢</td>
<td>Cost: Starting at 65¢</td>
</tr>
</tbody>
</table>
Cut Track with Copper and Wastewater

Copper Supply Pipes

Insulated Duct in Attic

Electrical Box and Wiring

Wastewater and HVAC

Wastewater, Supply and HVAC
FREQUENTLY ASKED QUESTIONS – PLUMBERS

1. CAN ANY TYPE OF PLUMBING SUPPLY PIPE BE USED IN A CFS STRUCTURE—COPPER, CPVC, AND PEX?

 Yes, any type of supply pipe material can be used when properly installed in a steel-framed structure. Supply, waste and vent lines of metal, PVC and similar plastics, and metal gas lines can all be accommodated within steel frames.

2. DOES IT TAKE MORE TIME TO INSTALL ROUGH PIPING IN A STEEL HOME?

 Veterans indicate that the rough-in plumbing work goes faster in a steel framed house. Pre-punched utility pathways (punchouts) and in-line framing keep the job of integrating pipe into the assembly simple. Unlike other light framing materials, CFS is installed in-line which means that wall studs and joists and wall studs and rafters/trusses align—leaving space for direct pipe runs to all floors.

3. WHAT SHOULD I EXPECT AT PLUMBING ROUGH-IN IN A CFS BUILDING?

 Expect simplicity. Steel studs have been used extensively in the commercial sector for tenant fit-ups and retrofits because of their ease of use and reuse by the framing, plumbing, and electric trades. Metals, like copper, require separation from the steel due to galvanic reaction and polyethylene pipe like PEX requires protection from the sharp edges of steel. Accessories called isolators are installed in the punchouts for plumbing pipes.

4. WHERE CAN I PURCHASE ISOLATORS?

 Isolators can be purchased from your plumbing supply distributor or manufacturer representatives identified on the product websites. Isolators retail at prices that are comparable with other pipe accessories, like hangers and brackets.

5. HOW HARD IS IT TO INSTALL ISOLATORS?

 It is simple to install isolators when you use the one piece type—they snap into the stud’s punchout from either side of the web using one hand and very little pressure. Isolators, or pipe-eyes as they are sometimes called, are sized for the outside diameter of the pipe. Some can be rotated in place within the punchout to position the pipe.

6. WHAT ABOUT VERTICAL RUNS TO THE SECOND STORY—HOW DO I GET PIPES THROUGH THE WALL TRACK?

 A drill with 1 ¾ inches metal hole saw bit can be used to penetrate the wall track. Hole punches that match standard pipe isolator sizes are also available. Larger diameter holes for drain and vent stacks can be cut with hole saws, hole punches, or unibits. At higher cost, a plasma cutter will also perform the job. These same tools will penetrate a stud or joist web if a custom punchout is needed. (See Tools for the Trades, page 5.)
Tip: Center custom holes in the web. Space holes at least 10 inches away from the end of the member. Maintain a minimum of 24 inches between holes. (See Code at a Glance, back cover.)

7 seven

HOW ARE PIPES SUPPORTED IN CFS FRAMES?
Pipe talons and standoff brackets will support any of the supply pipe types allowed by the building codes. The supports are fastened to the steel with screws rather than nails.

8 eight

ARE JOIST PUNCHOUTS LARGE ENOUGH TO ACCOMMODATE 3-INCH DRAIN PIPES?
Punchouts in generic joists may be up to 4 ¾ inches x 6 inches in size, dependent upon the joist dimension and manufacturer. (Specifics on allowable hole locations for generic steel shapes are covered in Table R505.2(3) in the International Residential Code.) There are many specialty joist products available with larger utility punchouts.

FREQUENTLY ASKED QUESTIONS – ELECTRICIANS

1 one

CAN ANY TYPE OF WIRING BE USED IN A CFS STRUCTURE?
Non-metallic sheathed wire, or Romex, common to residential applications, and armored cable, or BX, used in commercial applications will be featured in this guide, and each are commonly used in steel buildings.

2 two

DOES IT TAKE MORE TIME TO INSTALL WIRING IN A STEEL HOME?
The rough-in electric work goes faster in a steel-framed house because punchouts keep the job of drilling holes to a minimum. The large area of the punchout in CFS has encouraged some electricians to pull bundles of wire simultaneously, further speeding the installation.

3 three

WHAT SHOULD I EXPECT AT ELECTRIC ROUGH-IN OF A CFS BUILDING?
Expect to use your drill less because of the punchouts for horizontal wire runs. Metal-sheathed wire, like BX, doesn’t require any separation from contact with the steel but non-metallic sheathed wired, like Romex, will require protection from the sharp edges of the punched hole. Accessories called grommets are installed in the punchouts.

4 four

WHERE CAN I PURCHASE GROMMETS?
Grommets can be purchased from your electric supply distributor or manufacturer representatives identified on the product websites. Grommets retail at prices that are comparable with other electrical accessories, like boxes and wire ties.

5 five

HOW HARD IS IT TO INSTALL GROMMETS?
It is simple to install grommets when you use the one piece type—they snap into the stud’s punchout from either side of the web using one hand and very little pressure.
6 six

WHAT TOOLS CAN BE USED TO MAKE CUSTOM HOLES IN STEEL WHEN THEY ARE REQUIRED?

A drill with a 1 ¾ inches metal hole saw bit can be used to penetrate the wall track for vertical wire runs from floor to floor. Hole punches that match standard grommet sizes are also available. At higher cost a unibit or a plasma cutter will also perform the job. These same tools will penetrate a stud or joist web if a custom punchout is needed. (See Tools for the Trades, page 5.)

7 seven

CAN I STAPLE VERTICAL NM WIRE TO THE CFS?

No, NM wire is not stapled to a CFS stud because the staples will not penetrate the steel. Instead, wires are held in place with wire ties fed through punchouts in the CFS or with mounted head cable ties which are cinched around wire bundles. Mounting hole or mounted head cable ties are specialized ties that have a ring at one end that serves for fastening the tie to a CFS component with a screw. Other specialized wire accessories are available to re-support wires, like cable supports and standoffs.

8 eight

CAN I USE THE SAME PLASTIC BOXES THAT I USE IN WOOD FRAMES WITH ROMEX WIRE?

The receptacle and switch boxes that are used with CFS frames will have screw mounts rather than nails and several manufacturers, including Caddy-Erico¹ and Arlington Industries² produce brackets that can be mounted to steel to carry generic plastic boxes.

9 nine

HOW IS THE SERVICE PANEL BOX INSTALLED IN A STEEL FRAME?

The service panel box can be installed with steel blocking behind the box. Additional blocking above the box will provide the attachment surface for the wires.

10 ten

WHAT ABOUT GROUNDING A STEEL HOUSE?

The National Electrical Code® (NEC) requires that the electric service to any house be grounded. The metal frame of a steel building is a permitted electrode for grounding so long as the frame follows the code prescribed methods for earth connection, such as 10 feet or more of a metal member in direct contact with the earth or in encased concrete that is in direct contact with the earth. In the above-ground framework, bushings, grommets, and non-metallic sheathing isolate the wiring from the structure.

11 eleven

HOW MANY WIRES CAN BE RUN THROUGH ONE GROMMET?

The number of wires that may be run through one punchout, inside the grommet, is limited by the number of wires that a standoff or support can carry. The codes require that wiring that parallels a wall stud remain 1 ¼ inches from the framing member’s edge to prevent physical damage to the wire by the following trades, so wire supports that “stand off” the member with multiple wire runs are used. The support shown will hold six runs of NM wire in the center of a wall cavity.

Courtesy: Arlington Industries, Inc.

¹ http://www.erico.com/public/library/Fixing/FieldCat/LT0452.pdf
² http://aifittings.com/arliprod6_c.htm
Mounted Head Cable Tie Side Mounted Electrical Box

Cable Support

Courtesy: Cable Ties Plus, Inc.

RESOURCES

International Code Council
International Plumbing Code®
International Residential Code®
http://www.iccsafe.org

National Electrical Code®
http://www.nfpa.org/index.asp?cookie%5Ftest=1

Steel Framing Alliance
http://www.steelframing.org

Steel Stud Manufacturer’s Association
http://www.ssma.com/

CHECKLIST FOR STEEL TRADE CONTRACTORS

1. Preplan
 - Meet with the builder before project start to discuss service utility routes.
 - Verify availability of material and accessories with distributors.

2. Start Smart
 - Equip your team with the right tools. (Page 5)
 - Review the building code requirements for pipe or wire protection with the team.
 - Order the required accessories.

3. Prestart Site Visit
 - Test drill CFS components along the preplanned layout.
 - Verify that punchouts are aligned.

4. Arrive Ready
 - Use a permanent magic marker to write on steel.
 - Use grommets and isolators to mark horizontal layout paths.

5. Work Smart
 - All pipe/wire protection should be installed before the rough-in system.
 - Do not cut lips or flanges of steel components.

6. Work Safely
 - Hold and use the screwgun correctly to prevent fatigue and injury from repetitive stress. (Page 4)
 - Wear gloves to protect against the sharp edges of steel.
 - Wear safety glasses to protect eyes from metal shavings.
The materials set forth herein are for general information only. They are not a substitute for competent professional assistance. Application of any use of the information set forth herein does so at his or her own risk and assumes any resulting liability.

Information contained in this document to a specific project or setting should be reviewed by a qualified individual. SFA believes that the information contained in this publication substantially represents industry practice and related scientific and technical information, but the information is not intended to represent an official position of the SFA or to restrict or exclude any other construction or design technique. Additional design and detailing (i.e., coordinating with other materials, material specifications) is required for any of the details before they can be incorporated into construction documents. Anyone making use of the information set forth herein does so at his or her own risk and assumes any resulting liability.

Steel Framing Alliance
1201 15th Street, NW, Suite 320
Washington, DC 20005
www.steelframing.org

Steel Stud Manufacturers Association
800 Roosevelt Rd., Bldg. C, Suite 312
Glen Ellyn, IL 60137
T: 630.942.6592 F: 630.790.3095
info@ssma.com www.ssma.com

American Iron & Steel Institute
1140 Connecticut Avenue, N.W. Suite 705
Washington, DC 20036
T: 202.452.7100 F: 202.463.6573
www.steel.org

Information in this publication is based on the “Prescriptive Method,” basis of the steel requirements in the International Residential Code (IRC) and International Building Code (IBC). Some information has been summarized from the Steel Framing Alliance’s (SFA) “National Training Curriculum.” For more information or to obtain these publications, visit www.steelframming.org.

The materials set forth herein are for general information only. They are not a substitute for competent professional assistance. Application of any information contained in this document to a specific project or setting should be reviewed by a qualified individual. SFA believes that the information contained in this publication substantially represents industry practice and related scientific and technical information, but the information is not intended to represent an official position of the SFA or to restrict or exclude any other construction or design technique. Additional design and detailing (i.e., coordinating with other materials, material specifications) is required for any of the details before they can be incorporated into construction documents. Anyone making use of the information set forth herein does so at his or her own risk and assumes any resulting liability.

Steel Framing Alliance © SFA, 2008. All Rights Reserved.