AISI STANDARD

2004 Supplement to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition

Supplement to AISI/COFS/PM-2001

Endorsed by:

Steel Framing Alliance™
DISCLAIMER

The material contained herein has been developed by the American Iron and Steel Institute Committee on Framing Standards. The Committee has made a diligent effort to present accurate, reliable, and useful information on cold-formed steel framing design and installation. The Committee acknowledges and is grateful for the contributions of the numerous researchers, engineers, and others who have contributed to the body of knowledge on the subject. Specific references are included in the Commentary.

With anticipated improvements in understanding of the behavior of cold-formed steel framing and the continuing development of new technology, this material may eventually become dated. It is anticipated that AISI will publish updates of this material as new information becomes available, but this cannot be guaranteed.

The materials set forth herein are for general purposes only. They are not a substitute for competent professional advice. Application of this information to a specific project should be reviewed by a design professional. Indeed, in many jurisdictions, such review is required by law. Anyone making use of the information set forth herein does so at their own risk and assumes any and all liability arising there from.
PREFACE

The American Iron and Steel Institute (AISI) Committee on Framing Standards (COFS) has developed this 2004 Supplement to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings [Supplement] to provide revisions and updates to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition.

Also included in this document, as User Notes, are the Errata to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings [Errata], dated September 15, 2004. User Notes are not part of the Supplement, but are provided as an aid to the reader.

The Committee acknowledges and is grateful for the contributions of the numerous engineers, researchers, producers and others who have contributed to the body of knowledge on the subjects. The Committee wishes to also express their appreciation for the support and encouragement of the Steel Framing Alliance.
AISI COMMITTEE ON FRAMING STANDARDS

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Haws, Chairman</td>
<td>NUCONSTEEL</td>
</tr>
<tr>
<td>Steve Fox, Vice Chairman</td>
<td>Canadian Sheet Steel Building Institute</td>
</tr>
<tr>
<td>Jay Larson, Secretary</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>Don Allen</td>
<td>Steel Stud Manufacturers Association</td>
</tr>
<tr>
<td>John Butts</td>
<td>John F. Butts & Associates</td>
</tr>
<tr>
<td>Brad Cameron</td>
<td>Keymark Engineering</td>
</tr>
<tr>
<td>John Carpenter</td>
<td>Alpine Engineered Products</td>
</tr>
<tr>
<td>Nader Elhajj</td>
<td>NAHB Research Center</td>
</tr>
<tr>
<td>Jeff Ellis</td>
<td>Simpson Strong-Tie</td>
</tr>
<tr>
<td>Ray Frobosilo</td>
<td>Super Stud Building Products</td>
</tr>
<tr>
<td>Michael Gardner</td>
<td>Gypsum Association</td>
</tr>
<tr>
<td>Greg Greenlee</td>
<td>USP Structural Connectors</td>
</tr>
<tr>
<td>John Heydon</td>
<td>Heydon Building Systems</td>
</tr>
<tr>
<td>Jeff Klaiman</td>
<td>ADTEK Engineers</td>
</tr>
<tr>
<td>Roger LaBoube</td>
<td>University of Missouri-Rolla</td>
</tr>
<tr>
<td>John Matsen</td>
<td>Matsen Ford Design Associates</td>
</tr>
<tr>
<td>Michael Meek</td>
<td>Allied Studco</td>
</tr>
<tr>
<td>Kenneth Pagano</td>
<td>Scosta Corporation</td>
</tr>
<tr>
<td>Nabil Rahman</td>
<td>The Steel Network</td>
</tr>
<tr>
<td>Greg Ralph</td>
<td>Dietrich Industries</td>
</tr>
<tr>
<td>Gary Rolih</td>
<td>SENCO Fastening Systems</td>
</tr>
<tr>
<td>Reynaud Serrette</td>
<td>Santa Clara University</td>
</tr>
<tr>
<td>Fernando Sesma</td>
<td>California Expanded Metal Products</td>
</tr>
<tr>
<td>Marge Spencer</td>
<td>Compass International</td>
</tr>
<tr>
<td>Peter Tian</td>
<td>Berridge Manufacturing</td>
</tr>
<tr>
<td>Steven Walker</td>
<td>Steven H. Walker, P.Eng.</td>
</tr>
<tr>
<td>Lei Xu</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Rahim Zadeh</td>
<td>Marino\Ware</td>
</tr>
</tbody>
</table>
PRESCRIPTIVE METHODS SUBCOMMITTEE

Steve Fox, Chairman
Canadian Sheet Steel Building Institute
Jay Larson, Secretary
American Iron and Steel Institute
Don Allen
Steel Stud Manufacturers Association
Nader Elhajj
NAHB Research Center
Michael Gardner
Gypsum Association
Greg Greenlee
USP Structural Connectors
Richard Layding
NUCONSTEEL
Hank Martin
American Iron and Steel Institute
John Matsen
Matsen Ford Design Associates
Dean Peyton
Anderson-Peyton Engineers
Greg Ralph
Dietrich Industries
Fernando Sesma
California Expanded Metal Products
Tim Waite
Simpson Strong-Tie
Lei Xu
University of Waterloo
Rahim Zadeh
Marino\Ware
This Page Intentionally Left Blank
TABLE OF CONTENTS

2004 SUPPLEMENT TO THE
STANDARD FOR COLD-FORMED STEEL FRAMING –
PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY DWELLINGS, 2001 EDITION

DISCLAIMER	... ii
PREFACE	.. iii
AISI COMMITTEE ON FRAMING STANDARDS	.. iv
PRESCRIPTIVE METHODS SUBCOMMITTEE	... v

A. GENERAL... 1

A4 Limitations on Framing Members... 1
 A4.5 Hole Patching ... 1

E. WALL FRAMING.. 2

E2 Wall to Foundation or Floor Connection ... 2
E3 Minimum Stud Sizes... 3
E7 Headers .. 3
 E7.3 Double L-Headers .. 3
E13 Braced Wall Design in High Wind Areas ... 4
 E13.3 Connections of Walls in High Wind Areas ... 4

F. ROOF FRAMING... 5

F2 Ceiling Joists .. 5
 F2.4 Ceiling Joist Top Flange Bracing ... 5
F7 Roof Framing Connections in High Wind Areas ... 6
 F7.2 Uplift Connection – Roof Rafter or Truss to Wall 6
 F7.3 Ridge Strap Connection .. 7
This Page Intentionally Left Blank
2004 SUPPLEMENT TO THE
STANDARD FOR COLD-FORMED STEEL FRAMING –
PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY
DWELLINGS, 2001 EDITION

A. GENERAL

A4 Limitations on Framing Members

(User Note: Revise the text in Section A4.5 on Hole Patching, as shown below.)

A4.5 Hole Patching

Web holes violating any of the requirements set forth in Section A4.4 shall be patched with if the depth of the hole does not exceed 70% of the flat width of the web and the length of the hole measured along the web does not exceed 10 inches (254 mm) or the depth of the web, whichever is greater. The patch shall be a solid steel plate, stud section, or track section in accordance with Figures A4-3 or A4-4. The steel patch shall be of a minimum thickness as the receiving member and shall extend at least 1 inch (25.4 mm) beyond all edges of the hole. The steel patch shall be fastened to the web of the receiving member with No.8 screws spaced no greater than 1 inch (25.4 mm) center-to-center along the edges of the patch with minimum edge distance of 1/2 inch (12.7 mm).

Structural members shall be replaced or designed in accordance with accepted engineering practices when web holes exceed the following size limits:

(a) The depth of the hole, measured across the web, exceeds 70% of the depth flat width of the web; and/or,

(b) The length of the hole measured along the web, exceeds 10 inches (254 mm) or the depth of the web, whichever is greater.
E. WALL FRAMING

E2 Wall to Foundation or Floor Connection

(User Note: Revise the text in Section E2 on Wall to Foundation or Floor Connection, add Figure E2-4, and revise the first row in Table E2-1 on Wall to Foundation or Floor Connection Requirements, as shown below.)

Structural walls shall be anchored to foundations or floors in accordance with Table E2-1 and Figures E2-1 through E2-3 E2-4.

Figure E2-4 Wall to Floor Connection

Table E2-1
Wall to Foundation or Floor Connection Requirements¹

<table>
<thead>
<tr>
<th>Framing Condition</th>
<th>Wind Speed (mph), Exposure, & Seismic Design Category²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85 A/B or SDC³ A,B,C</td>
</tr>
<tr>
<td>Wall bottom track to floor joist or track</td>
<td>1-No.8 screw at 12" o.c.</td>
</tr>
</tbody>
</table>

(User Note: Table E2-1 continues unchanged.)
E3 Minimum Stud Sizes

(User Note - Errata: In Tables E3-1a, E3-2a, E3-3a, E3-4a, E3-5a, E3-6a, E3-7a, E3-8a, E3-9a and E3-10a, for the case of wind exposure C, 350S162 member size, 24-inch spacing and 8-foot stud length, reverse the values for 120 mph and 130 mph wind speeds.)

(User Note - Errata: In Table E3-4b, for the case of 130 mph wind speed exposure C, 350S162 member size, 24-inch spacing, 8-foot stud and 20 psf snow load, change the value from “543” to “54”.)

E7 Headers

(User Note: Revise the text in Section E7.3 on Double L-Headers and replace Figure E7-3, as shown below.)

E7.3 Double L-Headers

Double L-headers shall be constructed in accordance with Figure E7-3 and Tables E7-10 through E7-23. An L-header consists of a cold-formed steel angle with one short leg lapping over the top track of the wall and one leg extending down the side of the wall above window or door openings as shown in Figure E7-3. Each angle is fastened to top track above an opening with No.8 screws spaced at 12 inches (305 mm) on center. The "L" angle is placed on both sides of the wall opening to form a double angle L-shaped header (double L-header). The long leg of the L-header angle shall be attached to each king and cripple stud(s) and a minimum of one king stud at each end with one No.8 screw at top and bottom.

![Figure E7-3 Double L-Header]
E13 Braced Wall Design in High Wind Areas

(User Note: Add Section E13.3.3 on Header Uplift Connections and add Figure E13-1, as shown below.)

E13.3 Connections of Walls in High Wind Areas

E13.3.3 Header Uplift Connections

When it is necessary to make an uplift strap connection to a back-to-back header the header beam shall be reinforced as shown in Figure E13-1. Uplift straps shall be installed on both sides of a back-to-back header beam (inside and outside of the wall) when the header is supporting loads from the roof and ceiling only.

Figure E13-1 Back-to-Back Header Beam Reinforcement for Uplift Strap Connection
F. ROOF FRAMING

F2 Ceiling Joists

(User Note: Revise Section F2.4 on Ceiling Joist Top Flange Bracing and add Figures F2-5 and F2-6, as shown below.)

F2.4 Ceiling Joist Top Flange Bracing

The top flanges of ceiling joists shall be laterally braced as required by Tables F2-1 through F2-8, with a minimum:

1. 33 mil (0.84 mm) C-shaped member in accordance with Figure F2-5, or
2. 33 mil (0.84 mm) track section in accordance with Figure F2-5, or
3. 33 mil (0.84 mm) hat section in accordance with Figure F2-5, or
4. 54 mil (1.37 mm) 1-1/2” cold-rolled channel section in accordance with Figure F2-5, or
5. 1-1/2 inch x 33 mil (38 mm x 0.84 mm) continuous steel strap in accordance with Figure F2-6.

Lateral bracing shall be installed perpendicular to the ceiling joists and shall be fastened to the top flange of each joist with one No.8 screw. Blocking shall be installed between joists in-line with the termination of all straps and at a maximum spacing of 12 feet (3.66 m) measured perpendicular to the joists. Lateral bracing shall be fastened to blocking with two No.8 screws. Ends of lateral bracing shall be attached to blocking or anchored to a stable building component with two No.8 screws.

Exception: When strap bracing and 3.5” (88.9 mm) ceiling joists are used, strap bracing shall be fastened to blocking with three No.8 screws and ends of the strap bracing shall be attached to blocking or anchored to a stable building component with three No.8 screws.

Figure F2-5 Ceiling Joist Top Flange Bracing with C-Shape, Track or Cold-Rolled Channel Section
F7 Roof Framing Connections in High Wind Areas

(User Note - Errata: In Table F7-1, for the case of 130 mph basic wind speed, exposure C, 24-inch framing spacing and 28-foot roof span, change the value from “9130” to “913”.)

(User Note: Revise Section F7.3 on Ridge Strap Connection, as shown below.)

F7.2 Uplift Connection – Roof Rafter or Truss to Wall

Table F7-1

<table>
<thead>
<tr>
<th>Framing Spacinga (in.)</th>
<th>Roof Span (ft)</th>
<th>Required Connection Capacity4,2 (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE A/B 130</td>
<td>24</td>
<td>245</td>
</tr>
<tr>
<td>EXPOSURE C 110 120 130</td>
<td>24</td>
<td>336</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>557</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>691</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>804</td>
</tr>
</tbody>
</table>

913
F7.3 Ridge Strap Connection

Roof rafters shall be provided with a connection at the ridge line to transfer tension loads. The ridge connection shall be capable of resisting the unit loads listed in Table F7-3 multiplied by the appropriate spacing multiplier. Alternatively, a 1 1/4 inch (32 mm) by 33 mil (0.84 mm) steel ridge strap shall be provided with minimum No.8 screws on each end of the strap as required in Table F7-3. The number of screws shall be increased to account for the spacing multipliers shown in the table. The size of the ridge strap shall be in accordance with Table F7-4.
AISI STANDARD

2004 Supplement to the Commentary on the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition

Endorsed by:

Steel Framing Alliance™
DISCLAIMER

The material contained herein has been developed by the American Iron and Steel Institute Committee on Framing Standards. The Committee has made a diligent effort to present accurate, reliable, and useful information on cold-formed steel framing design and installation. The Committee acknowledges and is grateful for the contributions of the numerous researchers, engineers, and others who have contributed to the body of knowledge on the subject. Specific references are included in this Commentary.

With anticipated improvements in understanding of the behavior of cold-formed steel framing and the continuing development of new technology, this material may eventually become dated. It is anticipated that AISI will publish updates of this material as new information becomes available, but this cannot be guaranteed.

The materials set forth herein are for general purposes only. They are not a substitute for competent professional advice. Application of this information to a specific project should be reviewed by a design professional. Indeed, in many jurisdictions, such review is required by law. Anyone making use of the information set forth herein does so at their own risk and assumes any and all liability arising there from.
PREFACE

The American Iron and Steel Institute (AISI) Committee on Framing Standards (COFS) has developed this 2004 Supplement to the Commentary on the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition [Supplement] to provide revisions and updates to the Commentary on the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition [Prescriptive Method].

The Committee acknowledges and is grateful for the contributions of the numerous engineers, researchers, producers and others who have contributed to the body of knowledge on the subjects. The Committee wishes to also express their appreciation for the support and encouragement of the Steel Framing Alliance.
AISI COMMITTEE ON FRAMING STANDARDS

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Haws, Chairman</td>
<td>NUCONSTEEL</td>
</tr>
<tr>
<td>Steve Fox, Vice Chairman</td>
<td>Canadian Sheet Steel Building Institute</td>
</tr>
<tr>
<td>Jay Larson, Secretary</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>Don Allen</td>
<td>Steel Stud Manufacturers Association</td>
</tr>
<tr>
<td>John Butts</td>
<td>John F. Butts & Associates</td>
</tr>
<tr>
<td>Brad Cameron</td>
<td>Keymark Engineering</td>
</tr>
<tr>
<td>John Carpenter</td>
<td>Alpine Engineered Products</td>
</tr>
<tr>
<td>Nader Elhajj</td>
<td>NAHB Research Center</td>
</tr>
<tr>
<td>Jeff Ellis</td>
<td>Simpson Strong-Tie</td>
</tr>
<tr>
<td>Ray Frobosilo</td>
<td>Super Stud Building Products</td>
</tr>
<tr>
<td>Michael Gardner</td>
<td>Gypsum Association</td>
</tr>
<tr>
<td>Greg Greenlee</td>
<td>USP Structural Connectors</td>
</tr>
<tr>
<td>John Heydon</td>
<td>Heydon Building Systems</td>
</tr>
<tr>
<td>Jeff Klaiman</td>
<td>ADTEK Engineers</td>
</tr>
<tr>
<td>Roger LaBoube</td>
<td>University of Missouri-Rolla</td>
</tr>
<tr>
<td>John Matsen</td>
<td>Matsen Ford Design Associates</td>
</tr>
<tr>
<td>Michael Meek</td>
<td>Allied Studco</td>
</tr>
<tr>
<td>Kenneth Pagano</td>
<td>Scosta Corporation</td>
</tr>
<tr>
<td>Nabil Rahman</td>
<td>The Steel Network</td>
</tr>
<tr>
<td>Greg Ralph</td>
<td>Dietrich Industries</td>
</tr>
<tr>
<td>Gary Rolih</td>
<td>SENCO Fastening Systems</td>
</tr>
<tr>
<td>Reynaud Serrette</td>
<td>Santa Clara University</td>
</tr>
<tr>
<td>Fernando Sesma</td>
<td>California Expanded Metal Products</td>
</tr>
<tr>
<td>Marge Spencer</td>
<td>Compass International</td>
</tr>
<tr>
<td>Peter Tian</td>
<td>Berridge Manufacturing</td>
</tr>
<tr>
<td>Steven Walker</td>
<td>Steven H. Walker, P.Eng.</td>
</tr>
<tr>
<td>Lei Xu</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Rahim Zadeh</td>
<td>Marino\Ware</td>
</tr>
</tbody>
</table>
PRESCRIPTIVE METHODS SUBCOMMITTEE

Steve Fox, Chairman Canadian Sheet Steel Building Institute
Jay Larson, Secretary American Iron and Steel Institute
Don Allen Steel Stud Manufacturers Association
Nader Elhajj NAHB Research Center
Michael Gardner Gypsum Association
Greg Greenlee USP Structural Connectors
Richard Layding NUCONSTEEL
Hank Martin American Iron and Steel Institute
John Matsen Matsen Ford Design Associates
Dean Peyton Anderson-Peyton Engineers
Greg Ralph Dietrich Industries
Fernando Sesma California Expanded Metal Products
Tim Waite Simpson Strong-Tie
Lei Xu University of Waterloo
Rahim Zadeh Marino\Ware
TABLE OF CONTENTS

2004 SUPPLEMENT TO THE COMMENTARY ON THE
STANDARD FOR COLD-FORMED STEEL FRAMING –
PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY DWELLINGS, 2001 EDITION

DISCLAIMER ... ii
PREFACE ... iii
AISI COMMITTEE ON FRAMING STANDARDS ... iv
PRESCRIPTIVE METHODS SUBCOMMITTEE ... v

E. WALL FRAMING ... 1
 E2 Wall to Foundation or Floor Connection ... 1
 E7 Headers .. 1
 E7.3 Double L-Headers .. 1
 E13 Braced Wall Design in High Wind Areas ... 1
 E13.3 Connections of Walls in High Wind Areas ... 1

REFERENCES ... 2
2004 SUPPLEMENT TO THE COMMENTARY ON THE
STANDARD FOR COLD-FORMED STEEL FRAMING –
PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY
Dwellings, 2001 Edition

E. WALL FRAMING

(User Note: Add Section E2 on Wall to Foundation or Floor Connection, as shown below.)

E2 Wall to Foundation or Floor Connection

In 2004, Table E2-1 was revised to allow direct connection of wall track to the floor sheathing rather than to require connection only through the floor sheathing to the floor joist or track. This revision was based on research by the NAHB Research Center (NAHBRC, 2003) in which five shear tests and six withdrawal tests were conducted where 33-mil track was connected to 23/32-inch-thick OSB sheathing using #8 screws. The average ultimate shear capacity was 412.2 lb and the average ultimate pullout capacity was 350.2 lb. Considering that the minimum allowable fastener capacities for steel-to-steel connections for #8 screws and 33 mil material of 164 lb for shear and 72 lb for pullout were used to calculate the requirements for the Prescriptive Method, the Committee deemed that it would not be necessary to require that every fastener connect to a floor joist or track member.

E7 Headers

(User Note: Revise the text in Section E7.3 on Double L-Headers, as shown below.)

E7.3 Double L-Headers

A double L-header is shown in Figure E7-3 of the Prescriptive Method. Tables for gravity and uplift loads are provided for double L-headers. Double L-headers are typically the easiest headers to install. They can be installed during or after the wall has been framed. They do not require pre-insulation and provide a large surface to apply finishing materials. They also require less material (steel and screws) than back-to-back or box-beam headers. Double L-headers do not need to be cut to exact lengths; however, they need to lap over the required a minimum of one king stud at each end.

In 2004, the requirements in the Prescriptive Method for the L-header to king stud connection was revised to be consistent with the Header Standard (AISI, 2001c). This was unintentionally missed in the previous edition of the Prescriptive Method.

E13 Braced Wall Design in High Wind Areas

(User Note: Add Section E13.3.3 on Header Uplift Connections, as shown below.)

E13.3 Connections of Walls in High Wind Areas

E13.3.3 Header Uplift Connections

In 2004 a figure was added to the Prescriptive Method to illustrate a header uplift connection to a back-to-back header beam. For back-to-back headers supporting roof and ceiling only, these provisions require that uplift straps be installed on both sides of
the header beam (inside and outside of the wall) in order to minimize any effect of torsion. The Committee felt this was appropriate since back-to-back header beams lack sufficient torsional strength and stiffness. For back-to-back headers supporting loads from one floor, roof and ceiling, and for any box and double L-headers, a single uplift strap is permitted and may be installed on either side of the header beam.

REFERENCES

(User Note: Add one reference, as shown below.)

(NAHBRC, 2003), *Hybrid Wood and Steel Sole Plate Connection Walls to Floors Testing Report*, National Association of Home Builders’ Research Center, Upper Marlboro, MD.